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Abstract

This paper examines the impact of fine particulate matter (PM2.5) on fatal car accidents across

the United States, using instrumental variable (IV) analysis with wind direction as an instru-

ment for air pollution. I find that a 1 µg/m³ increase in daily PM2.5 levels is associated with a

1.34% increase in daily fatal accidents after accounting for weather conditions and fixed effects.

Extending the analysis to hourly data, I find that a 1 µg/m³ increase in PM2.5 levels in the

hour prior to an accident results in a 1.97% increase in fatal crashes, suggesting that short-term

pollution exposure impairs cognitive function and increases accident risk in real time. Reducing

PM2.5 by 1 µg/m³ could prevent approximately 550 fatalities annually, leading to an estimated

economic savings of $4.06 billion based on the value of a statistical life (VSL). These findings

contribute to the literature on the cognitive effects of air pollution and suggest that the social

costs of pollution may be underestimated.
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1 Introduction

Motor vehicle crashes are one of the leading cause of death in the United States.

Car accidents are preventable cause of death, and there is a large body of lit-

erature examining how various policies affect traffic fatalities. For example, it

has been established that policies regarding mandatory seat-belt use (Cohen and

Einav (2003)) and drunk driving (Eisenberg (2003)) significantly reduced road fa-

talities. It is important to note that most literature focuses on policies to which

drivers can directly respond and adjust their behavior on the road. Before a

policy becomes law, there is a time period during which drivers may prepare to

use motor vehicles under a new policy. This paper, however, is a contribution

to a limited literature examining drivers’ response to exogenous shocks. It is

important to know, from policymakers’ perspective, if there is a common and

unexpected shock that can affect drivers’ ability to operate a motor vehicle. This

knowledge can be useful for designing effective interventions, such as real-time

alerts or temporary restrictions on high-risk driving conditions. Quantifying the

risks associated with such shocks allows to conduct a more accurate cost-benefit

analysis. Measures like pollution advisories or dynamic speed limits could help

mitigate accident risks and save lives, reducing the economic burden of traffic

fatalities.

While in Europe the rate of traffic fatalities has been decreasing, in the United

States it is on the rise. The European Commission published a report suggesting

that during 2019-2022 the motor vehicle fatality rate decreased by 10% in the

EU. Simultaneously, according to CDC National Center for Health Statistics,

from year 2019 to 2021 there was a 16% increase in motor vehicle fatalities in the

United States. Properly understanding what parameters affect the motor vehicle
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fatality rate can be crucial when designing a policy aimed at reducing it.

In this paper I find that short term exposure to particulate matter leads to

a statistically significant increase in road fatalities. These results suggest that

the benefits of environmental policy and ameliorating air pollution are underes-

timated, as improving air quality can result in fewer accidental deaths on the

road, which in turn would lead to lower public health expenditures. From a

policymaker’s perspective, there is a tradeoff between health costs and economic

benefits when implementing a tax on air pollution. Understanding the health

costs of air pollution is essential for environmental policy proposals. If health

costs are not estimated correctly, it will negatively impact the efficiency of envi-

ronmental policy.

Air pollution is a significant public policy issue with major negative conse-

quences. Multiple studies have shown that exposure to air pollution leads to

adverse health outcomes, mainly through respiratory and cardiovascular diseases

(Kim, Jahan, and Kabir (2013), Fiordelisi, Piscitelli, Trimarco, Coscioni, Iac-

carino, and Sorriento (2017)). Poor air quality imposes a heavy burden on pub-

lic health expenditures ((Segalowitz (2008)) as chronic diseases and disabilities

caused by pollution lead to a large increase in healthcare costs.

Beyond the direct impact on health, air pollution also can also negatively

affect economic outcomes. There is a considerable evidence that air pollution

has a negative impact on labor productivity (Carson, Koundouri, and Nauges

(2011), Rodrigues-Silva, de Paula Santos, Saldiva, Amato-Lourenço, Miraglia

et al. (2012), Hanna and Oliva (2015)). Air pollution may affect worker pro-

ductivity through various channels. The most intuitive way work performance

can decline is due to decreased work attendance caused by exposure to poor air
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quality. Another, less obvious channel through which air pollution can decrease

productivity, is a decline in cognitive functioning due to being exposed to air

pollutants. This can lead to increase in operation business costs. Overall, the

negative effects of air pollution on the cognitive system are well-studied (Haus-

man, Ostro, and Wise (1984)).

Given that exposure to air pollution has been shown to impair cognitive func-

tioning, it is reasonable to expect a negative impact on tasks requiring focus

and quick decision-making, such as driving. Driving a motor vehicle demands

sustained attention and quick reflexes, all of which may deteriorate under the in-

fluence of pollutants like particulate matter (PM2.5). If air pollution negatively

impacts these cognitive actions, drivers are more prone to errors and delayed

reactions on the road, which could lead to an increase in traffic accidents. It

is plausible that higher levels of air pollution would correlate with a rise in car

fatalities as drivers are cognitively impaired.

Studies have also linked air pollution to impaired real-time decision-making,

showing increased errors among highly skilled professionals (Archsmith, Heyes,

and Saberian (2018)). While these errors often occur in relatively low-risk set-

tings, driving involves rapid, high-stakes decisions where even small mistakes can

lead to fatal accidents. This makes the decline in cognitive function caused by

pollution exposure particularly dangerous on the road. Research on the effects

of air pollution on mortality has predominantly focused on internal causes of

death and hospitalizations (Deryugina, Heutel, Miller, Molitor, and Reif (2019)).

However, the consequences of air pollution extend beyond these severe health

outcomes, posing immediate risks to public safety.

In this paper I estimate the magnitude of short-run effect of exposure to PM2.5
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on fatal car accidents in the United States. Using air quality data from the En-

vironmental Protection Agency (EPA) and traffic fatality data from the Fatality

Analysis Reporting System (FARS), I aggregate pollution and accident data to

the county-day level over the period from 1999 to 2013. The main concern when

estimating the causal impact of air pollution on traffic fatalities is that exposure

to air pollution is not randomly assigned, which can lead to biased estimates. To

address this, I use an instrumental variable (IV) approach, exploiting daily vari-

ations in wind direction as an exogenous source of variation in pollution levels.

After accounting for weather conditions and fixed effects, I assert changes in a

county’s wind direction only affect fatal car crashes through the impact on air

pollution, and that wind direction satisfies the exclusion restriction as an instru-

ment. By using variation in wind pattern, I isolate the effects of air pollution

on traffic mortality rate. A key benefit of the instrumental variable method-

ology is that it eliminates the need to isolate the source of pollution. This is

particularly important in the context of air quality studies, where multiple emis-

sion sources—such as industrial facilities, vehicle traffic, and natural events like

wildfires—can simultaneously contribute to pollution levels. By using exogenous

variation, such as changes in wind direction, the IV approach allows me to isolate

the impact of pollution on traffic accidents, without needing to take the source

of pollution into account.

My main air pollutant of interest is PM2.5. Particulate matter (PM) con-

sists of tiny solid and liquid particles suspended in the air, and it is regulated

by the EPA. Fine particles under 2.5 micrometers in diameter, including com-

bustion particles, metals, and organic compounds, are called PM2.5. Not only

do these smaller particles enter the lungs but they also reach the bloodstream.
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Natural sources of PM2.5 include volcanic eruptions and wildfires, while anthro-

pogenic sources come from fossil fuel combustion in power plants, industries, and

vehicles. PM2.5 can remain airborne for extended periods and travel long dis-

tances and penetrate buildings unless the buildings are equipped with air filtering

system. Long-term exposure to PM2.5 is associated with premature death, par-

ticularly in individuals with chronic heart or lung diseases, as well as impaired

lung development in children.

I find that a one microgram per cubic meter (µg/m³) increase in PM2.5 levels

leads to a 0.0009 increase in daily fatalities per county. This finding suggests

that a one (µg/m³ increase in PM2.5 corresponds to approximately a 1.34 per-

cent increase in fatal car accidents, or roughly 550 additional deaths annually

across the United States. Using the value of a statistical life (VSL) which is

commonly used by policymakers to quantify the economic value of reducing mor-

tality risks, this translates to $4.06 billion. These results hold after controlling for

temporal variation in atmospheric conditions such as wind speed, temperature,

and precipitation, as well as geographic fixed effects to account for seasonal and

regional variations in both air quality and traffic patterns. This paper provides

more rationale for adopting stricter air quality standards and pollution reduction

policies, since true costs of pollution might be underestimated.

In addition to the daily analysis, I extend the study to examine how immediate

exposure to pollution affects road safety using hourly data from 2010 to 2013.

The hourly results reveal that a 1 µg/m³ increase in PM2.5 levels leads to a

1.97% increase in fatal car crashes. These findings highlight the cognitive effects

of pollution on drivers’ decision-making and reaction times. Including day-of-

week fixed effects in the hourly analysis is important as it allows me to capture
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weekday and weekend driving patterns that influence accident likelihood. This

more granular approach demonstrates how pollution’s impact on real-time driving

safety is not uniform throughout the day but fluctuates with variations in traffic

intensity and driving behavior.

The relationship between the daily and hourly results reveals how pollution

affects drivers over different time frames. While the daily analysis suggests that

pollution exposure throughout the day increases accident risks, the hourly anal-

ysis indicates that short-term exposure, specifically in the hour leading up to an

accident, has a slightly larger impact. . Together, the daily and hourly findings

suggest that both accumulated and immediate exposure to pollution matter, but

immediate exposure may be especially detrimental in high-risk situations, such

as those requiring quick reflexes and real-time decision-making.

This paper builds on the methodology from Deryugina et al. (2019), using

their instrumental variable (IV) strategy to establish causality between air pol-

lution and adverse health or safety outcomes. The validity of an IV approach

holds as daily variations in wind direction are strongly correlated with the en-

dogenous variable, in this case, PM2.5 levels. Deryugina et al. have established

that changes in wind direction are a good predictor of local pollution concentra-

tions. The exclusion restriction, which assumes that wind direction impacts car

accidents only through its effect on pollution, not through other channels, holds.

I am able to isolate the short-term effects of particulate matter on traffic safety,

reducing potential bias in my estimates that might arise from confounding factors

like driving patterns or regional economic conditions.

This paper contributes to growing literature on negative effects of air pollu-

tion on cognitive functioning. Previous studies have documented the impact of
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air pollution on labor productivity (He, Liu, and Salvo (2019)) and crime rates

(Herrnstadt, Heyes, Muehlegger, and Saberian (2021)) through a decline in cog-

nitive function. The role of air quality in traffic safety has been less explored.

By estimating the extent to which short-term exposure to PM2.5 can increase

fatal car crashes, my findings highlight the broader societal costs of pollution

and its influence on cognitive function in high-stakes, real-time decision-making

scenarios. The paper closest to mine is Sager (2019). It examines the impact

of air pollution on road safety in the United Kingdom between 2009 and 2014.

Using temperature inversions as a source of exogenous variation, they find that

a 1µg/m increase in PM2.5 levels leads to a 0.3–0.6% increase in the number of

vehicles involved in road accidents per day. My results are consistent with those

findings. It is interesting to consider this question in the context of the United

States because people in the United States rely on cars way more than in the

United Kingdom and in general the attitude to driving is different culturally.

The closest paper to mine is Burton and Roach (2023), which examines how ex-

posure to particulate matter pollution impairs cognition and increases fatal car

crashes. My paper extends this analysis by taking into account hourly obser-

vations. This more granular approach illustrates how fluctuations in pollution

within a single day influence driving safety.

The remainder of this paper is organized as follows. Section 2 provides back-

ground information on particulate matter (PM), describing the different types

of PM and their sources, as well as the health risks associated with exposure.

Section 3 outlines the data sources used in this paper. In Section 4, I present

the identification strategy and empirical methodology. Section 5 discusses the

results. In Section 6 I present my results for hourly level analysis. Finally, Sec-
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tion 7 concludes the paper by summarizing the findings and their implications

for public policy.

2 Background on PM (particulate matter)

Particulate matter is a term used to describe microscopic particles of solid and

liquid matter suspended in the air. There are two types of particles that are

regulated by the Environmental Protection Agency (EPA) in the US. Particu-

late matter with diameter of between 2.5 and 10 micrometers are called “coarse

particulates,” while PM less than 2.5 in diameter are called “fine particulates.”

PM10 particles are inhalable particles less than 10 micrometers in diameter.

For example, dust, pollen, and mold are PM10 particles. These particles are

small enough to get into the lungs. Exposures to PM10 have been linked to the

worsening of respiratory diseases, such as asthma, leading to hospitalization and

emergency department visits.

PM2.5 particles are inhalable particles less than 2.5 micrometers in diameter.

For example, combustion particles, metal, and organic compounds can be PM2.5

particles. These particles are small enough to get into the lungs and enter the

bloodstream. The main natural sources of PM2.5 are volcanic eruptions and

wildfires. As for anthropogenic sources, they include fossil fuel combustion from

power plants, industries, and automobiles. They can stay in the air for a long time

and travel for hundreds of miles. They can enter buildings: hence, many people

are easily exposed to it. Long-term exposure to PM2.5 has been associated with

premature death, particularly in people who have chronic heart or lung diseases,

and reduced lung function growth in children.

PM2.5 is considered to be the most dangerous form of air pollution from a
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public health perspective. Once PM2.5 enters the lungs and bloodstream, it has

been linked to a range of cardiovascular and respiratory diseases, including heart

attacks, strokes, chronic obstructive pulmonary disease (COPD), and lung can-

cer (Pope, Burnett, Thun, Calle, Krewski, Ito, and Thurston (2002); Brook, Ra-

jagopalan, Pope III, Brook, Bhatnagar, Diez-Roux, Holguin, Hong, Luepker, Mit-

tleman et al. (2010); Dockery, Pope, Xu, Spengler, Ware, Fay, Ferris, and Speizer

(1993)). Long-term exposure to high levels of PM2.5 is also associated with pre-

mature death, particularly in vulnerable populations, such as those with existing

heart or lung conditions Hoek, Krishnan, Beelen, Peters, Ostro, Brunekreef, and

Kaufman (2013); Pope and Dockery (2006). PM2.5 can remain suspended in the

air for a long time and travel significant distances - even thousands of miles -

from the source. If pollution originates in industrial regions, it can still affect

rural areas or areas much further away from it. Additionally, PM2.5 particles can

penetrate indoor environments, making it difficult to avoid exposure, even when

indoors. The negative effects of being exposed to PM2.5 go beyond cardiovascular

issues. Recent studies show that PM2.5 can also affect the cognitive functioning

of the human brain (Weuve, Puett, Schwartz, Yanosky, Laden, and Grodstein

(2012)) . Particulate matter can cross the blood-brain barrier, which can cause

inflammation in the brain, leading to problems with memory, decision-making

and ability to concentrate (Calderon-Garciduenas, Franco-Lira, Torres-Jardon,

Henriquez-Roldan, Barragan-Mejia, Valencia-Salazar, Gonzales-Maciel, Reynoso-

Robles, Villarreal-Calderon, and Reed (2008)). This is especially concerning for

activities like driving, where full attention and quick thinking are crucial.

One of the main reasons PM2.5 is used as my pollution marker is that it is the

most consistently monitored pollutant. The EPA has provided comprehensive
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data on PM2.5 since 1999. Data for other pollutants monitored by EPA, such

as nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), carbon monoxide

(CO), lead and larger particulate matter (PM10), are much less consistently

available over time and across places.

3 Data

3.1 Data on air pollution

Air pollution data for pollutants regulated by the Clean Air Act (PM2.5, ozone,

carbon monoxide, sulfur dioxide, nitrogen dioxide) and PM10 are taken from

the Environmental Protection Agency (EPA) Air Quality database. I am using

dataset from Deryugina et al. (2019) that contains information on all pollutants at

the monitor level. The data are provided at pollution-monitor level. All available

monitor readings within counties are averaged to obtain county-level measures.

My pollutant of interest is PM2.5 and I use data at the daily level. For the daily

analysis, I analyze interval from 1999 to 2013, as the comprehensive data for

PM2.5 is available from 1999. Figures 1 and 5 show the change of fine particulate

matter levels over time in the United States over the 1999-2013 time period is

presented. The average PM2.5 levels steadily decline over time, from 13.6 µg/m3

(micro-grams per cubic meter) in year 1999 to 8.1 µg/m3 in year 2013. Number

of pollution monitors remained approximately the same since year 2001. It is

important to note that according to Sullivan, Krupnick et al. (2018), counties

can strategically place pollution monitors in cleaner areas, which can potentially

bias the results. Instrumental variable specification helps eliminate this source of

bias, so changes in monitored counties should not affect this analysis.
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Although only about a third of U.S. counties are covered by pollution moni-

tors, this is not a significant limitation for my analysis. The monitors are primar-

ily located in more populated and urban areas, where both traffic and pollution

levels are higher. Since these areas represent a substantial share of economic

activity and human exposure, the available data are representative. With this

coverage, I am able to capture 64% of all car accidents during the study period.

While rural areas may have less monitoring, these regions also tend to experience

fewer accidents.

On average, PM2.5 levels start relatively high in January, with concentrations

around 11 µ g/m³, then steadily decline to a low of approximately 8 µg/m³ by

April. However, concentrations rise sharply through the spring, reaching a peak

of nearly 12 µg/m³ in July. After this summer high, the concentration drops

again, hitting its lowest point of the year—just over 9 µg/m³.

This pattern can be explained by a combination of seasonal factors. The

mid-year rise in PM2.5 concentrations, especially in June and July, likely corre-

sponds to higher traffic due to summer travel, and possibly wildfires in certain

regions. These months tend to see more outdoor activities, which often con-

tribute to higher pollution levels. On the other hand, the elevated PM2.5 levels

in January and December could be driven by increased heating during the colder

months, with more homes and businesses burning fuel for warmth, leading to

higher emissions. The sharp decline in spring and late fall reflects a period of

reduced heating and potentially less travel or industrial activity, helping to lower

pollution levels during those months.
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3.2 Data on car accidents

Data on fatal car accidents level is obtained from the Fatality Analysis Reporting

System (FARS). It records every fatal car accident on public roads in the United

States. I aggregate FARS data to represent county-daily measure. On average

there is one fatal car accident in a county in a day. Figure 2 represents the raw

trend in car accidents over my time period of interest. On average there is from

19000 to 24000 fatal car accidents in a year in the United States in the areas

where air pollution is monitored.

The trend in accidents shows a steady rise from January, starting at around

2,000 accidents, and peaking in July with approximately 3,000 accidents. After

July, the total number of accidents gradually declines, with the year ending in

December at just over 2,500 accidents. The increase in accidents from winter to

mid-summer likely reflects several external factors. For example, summer months

see a surge in travel, with more people on the road for vacations, contributing to

the rise in accidents from about 2,000 in January to 3,000 in July. Additionally,

summer hazards like heavy rains or extreme heat in certain regions may also

elevate the risk of accidents. The decline after July could be attributed to a

reduction in travel as the vacation season ends, causing the number of accidents

to drop from 3,000 in July to around 2,500 by December. This decrease may also

reflect improved weather conditions in some regions as summer storms subside.

Furthermore, as people return to their regular routines and school begins, there

may be more incentives to be cautious while driving, contributing to the decline.
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3.3 Data on atmospheric conditions

Data on wind direction and wind speed for year 1999-2013 is available from

the North American Regional Reanalysis (NARR) daily reanalysis data. Wind

direction is defined as the direction the wind is blowing from, for example, if wind

direction is SW, it means the wind is blowing from the South-West. Clean data

on wind direction is obtained from Deryugina et al. (2019). Wind direction and

wind speed is reported for 32 by 32 kilometer grid and averaged at county-daily

level.

Other control variables such as maximum and minimal temperatures and

precipitation rates are obtained from Schlenker and Roberts (2009) who provide

methodology to produce 2.5 by 2.5 mile grid using data from PRISM and weather

stations. Once again, county-daily measures are used in this paper.

4 Identification and Empirical strategy

I am estimating short run effect of exposure to fine particulate matter on the

likelihood of getting in a fatal car crash. The relationship can be described by

the following equation

Ydmyc = βPM2.5dmyc + θX ′
dmyc + σc + σd + σmy + σsm + ϵdmyc (1)

where the dependent variable (Ycdmy) is the number of fatal car accident in county

c, on day d, in month m in year y. β, the main coefficient of interest is on the

daily level of fine particulate matter PM2.5. A vector of time-varying control

variables is represented by Xdmyc. In this model, I also control for extremely

high temperature levels (above 85◦F ) and extremely low temperatures (below

13



freezing), indicators for precipitation rates in deciles and wind speed in miles

per hour. To account for geographic differences in car traffic and air pollution, I

include county (σc) fixed effects. State-by-month fixed effects ((σsm) control for

any seasonal correlation between car accidents, wind direction and air pollution,

as well as allowing for this correlation to vary by state. Month-by-year fixed

effects (σmy) account for common time-varying shocks, such as those induced by

any environmental or car-related policy changes during the period of this study.

Standard errors are clustered at the county level. The interval I am considering

for my analysis at daily level spans 1999 to 2013. My methodology is based on

Deryugina et al. (2019).

OLS estimates are very likely to be biased for various reasons. First of all, ex-

posure to fine particulate matter is not randomly assigned. Pollution monitors’

locations are not random, with higher monitor counts typically showing up in

areas with higher population density. This non-random placement implies that

monitor readings might not fully record actual exposure faced by all individuals in

a county, leading to underestimated or overestimated levels of pollution exposure,

depending on the local geography. Furthermore, people can drive through areas

with different levels of pollution than where they live or are typically exposed.

This creates a potential discrepancy between the monitor readings and the ac-

tual exposure of drivers, introducing measurement error and potentially leading

to downwards bias in OLS estimates since measurement error is misrepresenting

the actual exposure to pollution. Overall, the presence of measurement error and

omitted variable bias is very likely. I exploit variation in air pollution due to

changes in daily wind direction in order to estimate the causal effect of exposure

to fine particulate matter on getting into a car accident. The key identifying
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assumption of my instrumental variables (IV) model is the exclusion restriction

that states that controlling for weather variables and fixed effects, changes in the

county’s daily wind direction only affect accidents through air pollution. Using

exogenous variation in wind direction will help isolate exposure to air pollution.

The instrumental variable methodology eliminates some of the biases present in

OLS by isolating pollution exposure from its source, focusing on variation in

air pollution caused by wind rather than relying on the non-randomly placed

monitors. This method addresses the concern that pollution exposure is corre-

lated with other unobserved factors, such as local driving behaviors or economic

activity, that could also influence motor vehical fatalities.

My first stage equation is defined the following way

PM2.5cdmy =
∑
g∈G

2∑
b=0

βg
b 1[Gc = g]∗WINDDIR90b

cdmy+X ′
cdmy+γc+γms+γmy+ϵcdmy

(2)

where PM2.5cdmy represents the fine particulate matter levels in county c,

on day d, in month m in year y. Variables 1[Gc = g] ∗ WINDDIR90b
cdmy are

the excluded instruments. Wind directions are split into four 90-degree bins

[90b, 90b + 90] such that b ∈ {0, 2}. Excluded reference bin is [270, 360], which

represents the West-Northwest wind direction. Results are robust to increasing

the number of bins and coefficients are very similar if i change the range of b

to b ∈ {0, 7} splitting wind direction into 8 bins. For the purpose of reducing

the computational burden of this model I am sticking to b ∈ {0, 2}. Vector of

controls X ′
dmyc and fixed effects are defined in equation (1).

Monitor locations within counties are quite widespread, as a result, pollution-

monitor readings in a county might misrepresent the actual average fine partic-
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ulate matter exposure for county residents. In Deryugina et al. (2019), k-means

cluster algorithm is used to classify all the pollution monitors in the United States

into a hundred spatial groups based on their location. Grouping counties into

spatial clusters based on proximity to monitors can help avoid the issue of sparse

monitoring. Neighboring monitors are more likely to be assigned to the same

group than the monitors far away from each other. On average each geographic

group contains 21 monitors and 9 counties. Indicator for a county c being as-

signed to a group g from the set of monitor groupsG is represented by the variable

1[Gc = g]. This group division eliminates the issue of sparse monitor locations

and limits the effect of wind direction in a county on its air pollution level to

be the same within all counties assigned to a specific geographic area. Potential

measurement error is also addressed through this approach. It is expected that

the impact of the local sources of pollution emission will differ within a monitor

group, based on the relative location of pollution monitor and pollution source.

By splitting counties into different groups geographically, the impact of variation

due to locally produced pollution is reduced. The most relevant example of lo-

cally produced pollution in this context is the pipe emissions from cars that can

contain fine particulate matter. It is important to note here that another thing

generating measurement error is that locally produced pollution is unlikely to

reach all the people within the monitor group. However, the non-local pollution

sources located on either side of the whole monitor group are expected to have

the same effect on all monitors within the group which makes non-local pollu-

tion emission likely to determine the variation in air pollution levels analyzed in

equation (2), which is also helpful to reduce measurement error.

Coefficient of interest is βg
b which represents the interaction between fine par-
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ticulate matter and wind direction. It varies geographically between 100 assigned

groups and between 4 different wind direction bins.

Wind direction as an instrument for air pollution is a commonly used instru-

ment, and since it is a strong predictor of pollution levels, weak instrument is

not a concern within this setting. My final specification has N=3x100=300

instruments and my first stage F-statistics is sufficiently large and is equal to

370.5.

5 Results for daily analysis

I start with the potentially biased ordinary least squares regression results with

and without controls are presented in Table 2. Results of the instrumental vari-

able specification with and without controls are presented in Table 5. The OLS

estimates of effect of air pollution are statistically significant and show that a

one µg/m3 increase in the levels of fine particulate matter leads to an increase of

0.0002 in fatalities per capita. This effect is very small and represents a 0.02%

increase. It becomes even smaller after controlling for atmospheric variables,

signifying only a 0.001 increase in fatalities. Pollution exposure is often mea-

sured with error, as monitors may not capture the true exposure experienced by

all drivers across a county. This measurement error biases the OLS coefficient

toward zero.

To alleviate potential downwards bias from measurement error and omitted

variables, I am using IV specification. The IV results are statistically significant

at a 1% level and suggest that a one µg/m3 increase in the levels of fine particu-

late matter lead to increase of 0.0036 fatalities in a county per day. The results

are summarized in Table 4, with three models: (1) no controls or fixed effects,
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(2) with weather controls and county, month-year and state-month fixed effects,

and (3) adding day-of-week fixed effects. The percentage change indicates that

in the baseline model (column 1), a 1 µg/m³ increase in PM2.5 corresponds to a

5.43% increase in daily crashes. Adding controls for extremely high and low tem-

peratures, wind speed and precipitation rate, as well as fixed effects (column 2)

reduces the effect to 1.34%. Including Day-of-Week fixed effects (column 3) only

slightly alters the effect to 1.35%. This suggests that controlling for driving be-

havior throughout the week does not substantially affect the relationship between

air pollution and crashes. The addition of weather controls, such as precipita-

tion and temperature, significantly reduces the estimated effect. This suggests

that part of the observed relationship in the baseline model could be attributed

to weather factors. Fixed effects for counties, state-month, and month-year also

improve model precision, reflected by the increase in the F-statistic from 370.5

to over 3,000 across the models. The stability of the PM2.5 coefficient with and

without the Day-of-Week fixed effects indicates that pollution’s impact on crashes

is not driven by differences in weekday traffic patterns at the daily scale. Neg-

ative sign of coefficients for wind speed and precipitation rate is consistent with

the literature. Higher wind speeds and precipitation may reduce crash frequency

as drivers become more cautious, reduce speed, or avoid travel altogether during

poor weather conditions. (Knapp, Kroeger, Giese et al. (2000)).

My final specification has N=3x100=300 instruments and my first stage

F-statistic is sufficiently large and is equal to 370.5, which is above the threshold

to ensure no weak instrument bias. In other words, a one standard deviation

increase in the levels of fine particulate matter leads to a 9% increase in daily

fatal car crashes, which translates to approximately 2700 fatal crashes a year.
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Fatal car crashes impose a substantial economic burden through medical costs.

Reducing levels of PM2.5 by one standard deviation could lead to a decrease in

fatal car crash level by 2700 accidents a year on average. Using the value of a

statistical life (VSL)—which is currently estimated at $7.4 million by the U.S.

Environmental Protection Agency (EPA (2006))—the potential economic cost of

these additional 2700 fatalities amounts to $19 billion per year. This number

represents the economic value of the lives lost due to traffic accidents driven by

higher pollution levels and does not account for the further costs associated with

non-fatal injuries, disabilities, or the long-term impacts on healthcare systems.

The indirect effects, such as the strain on emergency response services, long-

term healthcare costs, and psychological effects on victims’ families, would add

to the overall societal costs. These results highlight the benefits of environmental

policy, not only through addressing health concerns but also through reducing

motor vehicle fatalities. A well-designed policy could significantly improve both

public health and road safety. Lowering PM2.5 levels has the potential to save

thousands of lives annually and avoid billions in economic costs.

Between 1999 and 2013, average concentrations of PM2.5 fell by approximately

40%, from around 13.6 µg/m³ to 8.1 µg/m³ (Figure 5). This decline could trans-

late to significant reductions in fatal car accidents. With my findings showing

that a 1 µg/m³ increase in PM2.5 leads to a 1.34% increase in daily accidents, a

5.5 µg/m³ reduction (approximately 40%) would correspond to a 7.4% decrease

in fatal crashes.

Fatal accidents and PM2.5 concentrations on average both peak in July. The

rise in summer travelling could partially explain why we see more accidents and

higher air pollution, as more vehicles on the road naturally lead to more emissions
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and a higher likelihood of traffic incidents. I argue that the cognitive effects

of air pollution could also explain variation in fatal car accidents rate. When

PM2.5 concentrations are high—especially in busy, densely populated areas—it

could impair drivers’ attention, slow their reaction times, and impact decision-

making. To ensure that I am not simply capturing the effect of summer’s high

temperatures, I control for extreme heat (above 85°F), which could affect both

pollution and accidents. Additionally, the use of month-by-year and state-by-

month fixed effects accounts for broader seasonal patterns and region-specific

differences to help isolate the effect.

6 Hourly estimates

This paper estimates the short-term effect of exposure to fine particulate matter

(PM2.5) on fatal car crashes in the United States, using hourly data from 2010

to 2013. To address potential endogeneity and measurement error, I employ an

instrumental variable (IV) approach, where hourly variations in wind direction

serve as an exogenous instrument for PM2.5.

The equation I am estimating can be described as follows:

Yhmyc = β PMhdmyc + θX ′
hdmyc + σc + σsm + σmy + σd + ϵhdmyc

The results of the IV regressions using hourly data are summarized in Table

5. Column (1) presents the baseline IV regression without any controls or fixed

effects. The coefficient on PM2.5 is positive and statistically significant, indicat-

ing that an increase in air pollution correlates with more fatal car crashes. In

Column (2), I add weather-related controls (precipitation, wind speed, extreme
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temperature) along with County, State-Month, and Month-Year fixed effects.

This specification ensures that the results are not confounded by seasonal pat-

terns, regional driving behaviors, or temperature extremes. The coefficient on

PM2.5 decreases slightly but remains statistically significant, suggesting an effect

of air pollution on road safety after accounting for weather. Column (3) further

adds Day-of-Week fixed effects to account for behavioral differences in driving

patterns across weekdays and weekends. With these additional fixed effects, the

PM2.5 coefficient remains significant.

The coefficient on PM2.5 in Column (3) suggests that a 1 µg/m³ increase in

hourly PM2.5 concentration leads to an increase of 0.000071 fatal crashes per

hour. Given the average number of fatal crashes per hour is 0.0036, this effect

translates into a 1.97% increase in fatal crashes. Similarly, in the baseline model

(Column 1), the PM2.5 coefficient implies a 7.36% increase in fatal crashes per

hour. This decrease in the estimated percentage effect across models suggests that

some of the variation initially attributed to PM2.5 may be explained by weather

conditions or driving patterns across different days of the week. The change in

percentage effect from 0.44% to 1.97% reflects how hourly data captures patterns

that can’t be seen in daily data. Driving habits change throughout the day, for

example, rush hours, late nights, and weekends all have distinct traffic patterns

that influence accident risks. Including day-of-week fixed effects with hourly data

can help to account for these fluctuations.

The negative coefficients on precipitation and wind speed align with previous

findings in the literature. Higher wind speeds and precipitation may reduce

crash frequency as drivers become more cautious, reduce speed, or avoid travel

altogether during poor weather conditions. (Knapp et al. (2000)).
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7 Discussion

In this paper, I look at how exposure to fine particulate matter PM2.5 affects

fatal car crashes in the United States. I estimate the effects of air pollution

on traffic safety using hourly and daily data through an instrumental variable

(IV) approach. Across six different model specifications, the findings show how

pollution impacts accident risk in both the short and slightly longer term.

My main result is that a 1 µg/m³ increase in PM2.5 leads to a 1.34% increase

in daily accidents after accounting for weather conditions and fixed effects, down

from an initial 5.43% with no controls. This decrease suggests that factors like

temperature, precipitation, and wind speed influence traffic safety independently

of pollution.

I also find that being exposed to air pollution one hour prior to the accident

increases the chances of getting into one. More specifically, a 1 µg/m³ increase

in particulate matter levels results in a 1.97% increase in fatal accidents when

controlling for day-of-week fixed effects. It is important to note that not taking

into account day-of-week fixed effects reduces the estimate significantly, and the

estimated effect is just 0.44%. It suggests that traffic patterns on weekdays and

weekends mask some of the underlying impact of pollution that can’t be captured

when data are aggregated at daily level.

While accumulated exposure to poor air quality matters, the hourly analysis

suggests that immediate exposure to pollution—like breathing in dirty air just

before getting on the road—can impair drivers in real-time, reducing their ability

to make quick decisions. This explains why the effect of pollution on accidents

becomes more pronounced when using granular data, especially with day-of-week

fixed effects to capture behavioral differences. Overall, these findings suggest that
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reducing pollution could save lives through this channel.

This paper highlights the value of environmental policies aimed at reducing

pollution. Reducing PM2.5 concentrations by even a small amount could lead to

fewer accidents, less strain on emergency services, and lower public health costs.
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Figure 1: Average Monthly Total Accidents in the US

Figure 2: Average Monthly PM2.5 Concentration in the US

Figure 3: These graphs show the monthly averages of total accidents andPM2.5

concentrations across the United States for the years 1999-2013. The first graph
illustrates the average total number of accidents per month, while the second
graph shows the average concentration of PM2.5 (fine particulate matter). The
seasonal patterns in both graphs indicate potential correlations, particularly in
the summer months, where higher pollution levels and increased accident rates
coincide.
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Figure 4: Average Yearly Total Accidents in the US

Figure 5: Average Yearly PM2.5 Concentration in the US

Figure 6: These graphs display the yearly variations of total accidents and PM2.5

concentrations across the United States. The first graph illustrates the total num-
ber of accidents per year, while the second graph shows the average concentration
of PM2.5 .
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Figure 7: New York City: daily PM2.5 con-
centrations and wind direction. This figure
shows first stage results for New York City area,
with dependent variable being PM2.5 levels, and
independent variable being wind direction. Con-
trol variables and fixed effects are accounted for.
Results are consistent with what is expected - if
the wind blows from South-West (New Jersey),
recorded air quality is low, and if the wind blows
from the East (the ocean), recorded air quality
is high.
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Figure 8: San Francisco: daily PM2.5

concentrations and wind direction.
This figure shows first stage results for
San Francisco area, with dependent vari-
able being PM2.5 levels, and indepen-
dent variable being wind direction. Con-
trol variables and fixed effects are ac-
counted for. Results are consistent with
what is expected - if the wind blows
from South-East (continental), recorded
air quality is low, and if the wind blows
from the West (the ocean), recorded air
quality is high.
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Figure 9
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Variable Mean Std. Dev. Observations

Fatal crash 0.067 0.00013 4542124
PM2.5 µg/m3 10.6 7.14 4548823
tmax (F) 119.5 10.63 4548823
tmin (F) 107.18 9.84 4548823
Wind Speed (mtrs/sec) 4.49 2.87 4548823
Precipitation 4.5 2.87 4548823

Table 1: Summary Statistics

Table 2: OLS Regression Results using Daily Data

Dependent Variable: Total Car Crashes

(1) (2)

PM2.5 0.0002*** 0.0001***
(0.00003) (0.00003)

Observations 4548815 4548815
Controls × ✓
Fixed Effects × ✓

Note: Results are based on daily-level data for the US. The
dependent variable is the total number of fatal car crashes per
day. Column (1) presents the baseline OLS regression with-
out controls or fixed effects. Column (2) includes additional
weather-related controls and fixed effects. Standard errors are
clustered at the county level, and all regressions are weighted
by the county population. Significance levels are denoted by
*p < 0.1; **p < 0.05; ***p < 0.01.
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Table 3: OLS Regression Results using hourly data

Dependent Variable: Fatal Car Crashes

(1) (2)

PM2.5 0.000018∗∗∗ 0.000009∗∗∗

(0.000003) (0.000003)

Observations 5,091,589 5,091,589
Residual Std. Error 0.0603 (df = 5,091,588) 0.0603 (df = 5,091,588)
F Statistic 37.00∗∗∗ (df = 1; 5,091,588) 52.30∗∗∗ (df = 2; 5,091,588)

Controls ✗ ✓
Fixed Effects ✗ ✓

Note: Results in this table are based on hourly-level data for the US
for the period 2010-2013. The dependent variable is the number of fatal
car crashes per hour. Column (1) presents the baseline OLS regression
without controls or fixed effects. Column (2) includes additional weather-
related controls and fixed effects. Standard errors are clustered at the
county level, and all regressions are weighted by the county population.
Significance levels are denoted by *p < 0.1; **p < 0.05; ***p < 0.01.
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Table 4: The Effect of PM2.5 on Fatal Car Crashes: IV Estimates at Daily Level

Dependent Variable: Fatal Car Crashes

(1) (2) (3)

PM2.5 0.003639∗∗∗ 0.000895∗∗∗ 0.000905∗∗∗

(0.000189) (0.000023) (0.000023)
Precipitation -0.00260∗∗∗ -0.00260∗∗∗

(0.00005) (0.00005)
Wind Speed -0.00006 -0.00005

(0.00005) (0.00005)
County FE ✗ ✓ ✓
State-Month FE ✗ ✓ ✓
Month-Year FE ✗ ✓ ✓
Day-of-Week FE ✗ ✗ ✓

Mean of Crashes 0.067 0.067 0.067
% Effect 5.43% 1.34% 1.35%
Observations 4,548,815 4,548,815 4,548,814
Residual Std. Error 0.3305 0.2854 0.2852
F Statistic 370.5∗∗∗ 2,940∗∗∗ 3,044∗∗∗

Note: Results in this table are based on daily-level data for the U.S. The
dependent variable is the number of fatal car crashes per day. Column
(1) presents the baseline IV regression without controls or fixed effects.
Column (2) adds controls for weather conditions and temperature, along
with County, State-Month, and Month-Year fixed effects. Column (3)
adds Day-of-Week fixed effects to account for variations in driving pat-
terns across days. Each coefficient represents the effect of a 1 µg/m³
increase in PM2.5 on fatal crashes. The percentage effects are calculated
relative to the mean number of crashes (0.067 per day). Standard errors
are clustered at the county level. Significance levels: *p < 0.1, **p <
0.05, ***p < 0.01.
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Table 5: The Effect of PM2.5 on Fatal Car Crashes: IV Estimates at hourly level

Dependent Variable: Fatal Car Crashes

(1) (2) (3)

PM2.5 0.000265∗∗∗ 0.000016∗ 0.000071∗∗∗

(0.000034) (0.000010) (0.000009)
Precipitation -0.0002∗∗∗ -0.000152∗∗∗

(0.00001) (0.000009)
Wind Speed -0.0001∗∗∗ -0.000081∗∗∗

(0.00001) (0.00001)
County FE ✗ ✓ ✓
State-Month FE ✗ ✓ ✓
Month-Year FE ✗ ✓ ✓
Day-of-Week FE ✗ ✗ ✓

Mean of Crashes 0.0036 0.0036 0.0036
% Effect 7.36% 0.44% 1.97%
Observations 5,091,589 5,091,589 5,091,589
Residual Std. Error 0.0603 0.0603 0.06026
F Statistic 59.91∗∗∗ 192.50∗∗∗ 374.3∗∗∗

Note: Results in this table are using hourly-level data for the US for the pe-
riod 2010-2013. The dependent variable is the number of fatal car crashes per
hour. Column (1) presents the baseline IV regression without any controls
or fixed effects. Column (2) includes additional controls for weather condi-
tions and temperature, along with County, State-Month, and Month-Year
FE. Column (3) adds Day-of-Week fixed effects to account for variation in
driving patterns across different days of the week. Each coefficient represents
the effect of a 1 µg/m³ increase in PM2.5 on fatal crashes. The percentage
effects are calculated relative to the mean number of crashes (0.0036 per
hour). Standard errors are clustered at the county level, and all regressions
are weighted by the county population. Significance levels are denoted by *p
< 0.1, **p < 0.05, ***p < 0.01*.
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